Circuits and Systems for Efficient Portable-to-Portable Wireless Charging
نویسندگان
چکیده
In today's world of ever-increasing low-power portable electronics, from implants to wireless accessories, powering these devices efficiently and conveniently is an escalating issue. The proposed solution is to wirelessly recharge these lower-power portable devices through a common magnetic link with a higher-power portable device, such as a smartphone. Such a method is convenient for users, environmentally friendly, and cheap to implement. This portable-to-portable wireless charging application differs from conventional charging pad-based systems in that the transmitter is energy constrained, so system efficiency is key. Also, since both the transmitter and receiver are portable, loading on the transmitter changes dynamically, which affects efficiency and delivered power. This thesis addresses these challenges through the design of an efficient and robust wireless charging system. The first half of the thesis presents a transmitter power amplifier control loop for increasing efficiency and balancing power across changing loading conditions. Mathematical analysis of the resonant inductive wireless power circuit shows the impact of changing conditions on power amplifier zero-voltage switching, and its effect on efficiency and power. The control loop adjusts the power amplifier shunt capacitance and series inductance to maintain zero-voltage switching while regulating delivered power. The second half of the thesis presents the implementation of a resonant inductive wireless charging system operating at 6.78 MHz that transfers energy between portable devices with high efficiency. A custom integrated circuit designed in 0.18 µm HVCMOS implements the derived control loop by sensing for power amplifier zero-voltage switching and adjusting the power amplifier components. An end-to-end efficiency of 78% is achieved when delivering 200 mW over a 7 mm distance. Efficiencies over 70% are maintained over 4-12 mm distances. A diverse set of applications are demonstrated that use a smartphone to wirelessly recharge a fitness tracker, a cochlear implant, an MP3 player, a calculator, a toy light, a wireless keyboard, and a bicycle light, charging most devices in 2 minutes for a typical day's use.
منابع مشابه
An Experimental and Comparative Analysis of the Battery Charge Controllers in Off-Grid PV Systems
The study of the battery charge process as the only power storage agent in off-grid systems is of significant importance. The battery charge process has different modes, and the battery in these modes is dependent on the amount of charge. In order to charge the battery in off-grid systems, two charge controllers including Pulse Width Modulation (PWM) and Maximum Power Point Tracker (MPPT) are c...
متن کاملNon-ionizing electromagnetic waves measurement and monitoring Systems
In this paper, portable and online monitoring systems for non-ionizing EMF measurement, as well as some measurement results in Tehran are discussed. First of all, standards and recommendations related to EMF monitoring, measurement and exposure such as ISIRI No.8567, ICNIRP guideline and ITU-K.83 are reviewed. Then, technical facts and operation of portable device and monitoring station are int...
متن کاملHigh Efficient Wireless Charger for Electric Vehicle with Reduced Sensitivity to Misalignment using Multilevel Inverter
Wireless power transfer (WPT) has been found to be a practical replacement for cable power transfer which provides a wide range of applications. This technology offers a remarkable solution for charging electric vehicles (EVs) due to more convenience and increased safety. Moreover dynamic (in-motion) wireless charging offers the possibility of reducing the energy storage requirement on the veh...
متن کاملA survey on the wi-fi wireless network systems penetration approaches
Wireless network technology made it possible to communicate easily using the electromagnetic waves leading to removing the biggest barrier in portable communications. As these networks use the air as the communication medium which leads to face with more vulnerabilities. Wireless networks play a vital role in our life in a way that all devices ranging from local modems to organizational equipme...
متن کاملeGaN® FETs in Wireless Power Transfer Systems
Many of the wireless energy transfer solutions have targeted portable device charging that require features such as low profile, high efficiency, robustness to changing operating conditions and, in some cases, light weight. These requirements translate into designs that need to be efficient and able to operate without a bulky heatsink. Furthermore the design must be able to operate over a wide ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014